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Latent (hidden) variables

In reality, the “true” causal process probably includes a bunch of variables
not represented in our data. Unmeasured variables are called “latent” or
“hidden” and these pose a real problem for causal inference and causal
learning.

For example, the underlying causal process may be described by a DAG
G = (V ,E ) with vertices V = X ∪ L, but we only observe X .
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Latent variables from a structure learning point-of-view

Consider two observed variables X and Y which are known to be
dependent. What causal processes may explain this dependence?

X Y

a)

X Y

b)

X Y

L

c)

X Y

L

d)

X Y

L

e)

X Y

f)

X Y

S = 1

g)

+ combinations of f) & g) with the others.
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Latent variables from a structure learning point-of-view
Consider two observed variables X and Y which are judged to be
dependent. What causal processes may explain this dependence? (Let’s
exclude feedback and selection bias for the time being.)

X Y

a)

X Y

b)

X Y

L

c)

X Y

L

d)

X Y

L

e)

How could we possibly distinguish between these possibilities from
(observed) conditional (in)dependence facts alone?
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Distinguishing “real” causality from latent confounding
In general, with just two variables (+ no background knowledge about the
latents, no other assumptions) we cannot distinguish between those
possibilities. They all imply the same restrictions on the distribution
p(x , y): i.e., no restrictions at all.

However, with > 2 variables, some patterns of independence may help
narrow down the structure (assuming faithfulness).

For example:

Z X Y

L

⇒ Y and Z are not independent given X . (Why?)
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Patterns of independence constraints may rule out latent
confounding

Z1

X Y

Z2

L

Z1 ⊥⊥ Z2

Z1 6⊥⊥ Z2|X
Y 6⊥⊥ {Z1,Z2}
Y 6⊥⊥ Z1|X
Y 6⊥⊥ Z2|X
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Patterns of independence constraints may also suggest
latent confounding

X1 X2 X3 X4

L

X1 6⊥⊥ X2 and X2 6⊥⊥ X3 and X3 6⊥⊥ X4

X1 ⊥⊥ X4 and X1 ⊥⊥ X3 and X2 ⊥⊥ X4

X1 6⊥⊥ X3|X2

X2 6⊥⊥ X4|X3
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Patterns of independence constraints may also suggest
latent confounding

X1 X2 X3 X4

X1 6⊥⊥ X2 and X2 6⊥⊥ X3 and X3 6⊥⊥ X4

X1 ⊥⊥ X4 and X1 ⊥⊥ X3 and X2 ⊥⊥ X4

X1 6⊥⊥ X3|X2

X2 6⊥⊥ X4|X3

⇒ may represent the independence model with a mixed graph
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Constraint-based structure learning in the presence of
latent variables

The assumption of causal sufficiency is rarely warranted in practice!

Fortunately, there exist procedures that allow for arbitrary latent variables.
One constraint-based procedure, which follows similar logic to PC, is called
the FCI (Fast Causal Inference) algorithm.

We don’t want to perform search for the best DAG (or CPDAG) which
“fits” the data, since in general no DAG over X will do. We have to
consider searching over a different space of graphs.
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Latent projections

Beginning with a DAG G, it is useful to think about the induced
dependence structure when some variables have been marginalized out.
The conditional independence relations in the marginal distribution are
represented by an ADMG. One may construct an ADMG via the operation
of latent projection.

Consider a DAG G = (V ,E ) with vertex set V = X ∪ L. The latent
projection G′ = (V ′,E ′) is a mixed graph with vertex set V ′ = X such
that:

I for any Xi ,Xj ∈ X there is an edge Xi → Xj if there exists a directed
path from Xi to Xj in G, with all intermediate nodes on the path in L

I there is an edge Xi ↔ Xj if there exists a path from Xi to Xj of the
form Xi ← · · · → Xj , where every intermediate node on the path is in
L and no consecutive edges on the path are of the form → Lk ← for
Lk ∈ L.
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Latent projections
Note that an infinite number of distinct latent variable DAGs will share the
same latent projection ADMG!

X1 X2 X3 X4

L

X1 X2 X3 X4

L1

L2

L3 L4 L5
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ADMGs

ADMGs preserve conditional independence relations among the observed
variables. There is a separation criterion which generalizes d-separation to
structures with bidirected edges: m-separation.

For A,B,C disjoint subsets of X : A ⊥Gd B|C ⇐⇒ A ⊥G′m B|C .
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Direct structure learning of ADMGs is hard, not
well-developed

Though ADMGs have a relatively clear causal interpretation, some nice
properties, and lots of associated theory, they are not ideal targets for
structure learning. Why?

I Markov equivalence for ADMGs is complicated

I Parameterization of ADMGs is complicated (except for binary
variables)

I ADMGs are not maximal
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Maximality

Def. A graph G is said to be maximal if for every pair of vertices Xi ,Xj

Xi 6∈ Adj(Xj ,G) =⇒ ∃XS ⊆ X \ {Xi ,Xj} such that Xi ⊥⊥ Xj |XS

.
Thus a graph is maximal if every missing edge corresponds to at least one
independence in the model. No additional edge may be added to a
maximal graph without changing the independence model. (DAGs are
maximal. ADMGs are not.)
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Non-maximal ADMG

X1 X2 X3 X4
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Maximal Ancestral Graphs

To make a PC-style search procedure possible, we focus on a class of
graphs called Maximal Ancestral Graphs (MAGs). For the purposes of the
present discussion, we can view MAGs as a special type of ADMG.

Def. If Xi ↔ Xj in G then Xi ∈ Sp(Xj ,G).

Def. A (directed)1 ancestral graph G is a mixed graph (→ and ↔ edges)
such that ∀Xi ∈ X , Xi 6∈ An(Pa(Xi ,G) ∪ Sp(Xi ,G),G). That is, an
ancestral graph does not contain any directed or almost directed cycles.

Def. A MAG is an ancestral graph that is maximal.

1MAGs are actually more general than this: they can have undirected (−) edges to
represent selection bias in addition to latent confounding, but I’m going to ignore that in
this presentation.
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Maximal Ancestral Graphs

MAGs have some pros and cons.

Pros:

I They are maximal, so if we find a conditional independence we can
remove an edge in a PC-style search.

I We can characterize Markov equivalent MAGs.

I They have other “nice” properties of ADMGs, m-separation works
out, etc.

Cons:

I They have a somewhat confusing interpretation!

I Less “informative” than ADMGs

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 2 19 / 56



Maximal Ancestral Graphs
Xi → Xj in a MAG means that Xi is an ancestor of Xj in the underlying
DAG G.

Xi ↔ Xj means that Xi is not an ancestor of Xj and Xj is not an ancestor
of Xi , which implies that there is a latent common cause of Xi and Xj in G.

NB: An ancestral relationship + latent confounding can coexist! So just
because Xi → Xj in a MAG does not mean there is no latent common
cause between Xi and Xj .

Xi Xj ... in a MAG

Xi Xj

L

... may hide in the underlying DAG
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Maximal Ancestral Graphs

We can construct a MAG from a DAG by a procedure similar to latent
projection.

Def. An inducing path relative to L is a path on which every vertex not in
L (except for the endpoints) is a collider on the path and every collider is
an ancestor of an endpoint of the path.

Start with a DAG G over V = X ∪ L and construct a MAG G′ over
V ′ = X :

I for each pair of variables Xi ,Xj ∈ X , Xi and Xj are adjacent in G′ iff
there is an inducing path between them relative to L in G.

I for each pair of adjacent variables Xi ,Xj in G′, orient the edge as
Xi → Xj in G′ if Xi ∈ An(Xj ,G); orient it as Xi ← Xj in G′ if
Xj ∈ An(Xi ,G); orient it as Xi ↔ Xj in G′ otherwise.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 2 21 / 56



Maximal Ancestral Graphs

A MAG will have “extra” adjacencies that do not correspond to
adjacencies in the underlying DAG. These are adjacencies induced by the
latent confounders, and which must be there to preserve maximality.

X1 X2 X3 X4

L

X1 X2 X3 X4
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Partial Ancestral Graphs

A Markov equivalence class of MAGs is represented by a PAG. A PAG is a
mixed graph that has ◦→ and ◦–◦ edges to represent uncertainty about
edge endpoints. ◦ can correspond to a “tail” or “arrowhead.”

X1 X2 X3 X4 X5

Just like a CPDAG represents a set of DAGs, a PAG represents a set of
MAGs that each imply the same set of independence constraints.
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from Zhang (2008a)
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from Zhang (2008a)
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Algorithm 0.1: FCI(Test, α)

Input: Samples of the vector X = (X1, ..., Xp)′

Output: PAG P
1. Form the complete graph P on vertex set X with ◦–◦ edges.
2. s ← 0
3. repeat
4. for all pairs of adjacent vertices (Xi , Xj ) s.t. | Adj(Xi ,P) \ {Xj}| ≥ s

and subsets XS ⊂ Adj(Xi ,P) \ {Xj} s.t. |S| = s
5. if Xi ⊥⊥ Xj |XS according to (Test, α)

then

{
Delete edge Xi ◦–◦ Xj from P.
Let sepset(Xi , Xj ) = sepset(Xj , Xi ) = XS .

6. end
7. s ← s + 1
8. until for each pair of adjacent vertices (Xi , Xj ), | Adj(Xi ,P) \ {Xj}| < s.
9. for all triples (Xi , Xk , Xj ) s.t. Xi ∈ Adj(Xk ,P) and Xj ∈ Adj(Xk ,P)

but Xi 6∈ Adj(Xj ,P), orient Xi ∗→ Xk←∗ Xj iff Xk 6∈ sepset(Xi , Xj ).
10. for all pairs (Xi , Xj ) adjacent in P if ∃XS s.t.

XS ∈ pds(Xi , Xj ,P) or XS ∈ pds(Xj , Xi ,P) and Xi ⊥⊥ Xj |XS according to (Test, α)

then

{
Delete edge Xi ∗–∗ Xj from P.
Let sepset(Xi , Xj ) = sepset(Xj , Xi ) = XS .

11. Reorient all edges as ◦–◦ and repeat step 9.
12. Exhaustively apply orientation rules (R1-R10) in Zhang (2008b) to orient

remaining endpoints.
13. return P.

Let X ∈ pds(Xi , Xj ,G) if and only if X 6= Xi , X 6= Xj , and there is a path π between Xi and X in G such that for every
subpath 〈Xm, Xl , Xh〉 of π either Xl is a collider on the subpath in G or 〈Xm, Xl , Xh〉 is a triangle in G. A triangle is a triple
〈Xm, Xl , Xh〉 where each pair of vertices is adjacent.

Zhang (2008b) refers to “On the completeness of orientation rules for causal discovery in the presence of latent confounders and
selection bias,” Artificial Intelligence 172: 1873-1896.
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Testing subsets of pds(Xi ,Xj ,G)

FCI performs additional tests compared to PC. In particular, it tests
subsets of the set pds(Xi ,Xj ,G). This is because:

Theorem. If there exists an XS ⊆ X \ {Xi ,Xj} s.t. Xi ⊥m Xj |XS in MAG
G, XS ⊆ pds(Xi ,Xj ,G).

This is the key to removing edges in FCI, and the first part of the
algorithm really exists to in order to be able to compute pds(Xi ,Xj ,G).
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Example in R using pcalg package...
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Visible edges

Def. Given a MAG M / PAG P, a directed edge X → Y in M / P is
visible if there is a vertex Z not adjacent to Y , such that there is an edge
between Z and X that is into X (has an arrowhead at X ), or there is a
collider path between Z and X that is into X and every non-endpoint
vertex on the path is a parent of Y . Otherwise X → Y is said to be
invisible. (All directed edges in a DAG/CPDAG are visible.)

Directed edges that are visible do not “hide” confounders, they correspond
to unconfounded causal effects.
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Backdoor criterion for MAGs/PAGs

Def. Let X be a vertex in G, where G represents a causal DAG, CPDAG,
MAG, or PAG. Let R be a DAG or MAG represented by G, in the following
sense. If G is a DAG or MAG, we simply let R = G. If G is a
CPDAG/PAG, we let R be a DAG/MAG in the Markov equivalence class
described by G with the same number of edges into X as G. Let RX be
the graph obtained from R by removing all directed edges out of X that
are visible in P.

Def. Let X and Y be two distinct vertices in mixed graph G. We say that
V ∈ Dsep(X ,Y ,G) if V 6= X and there is a collider path between X and
V in G, such that every vertex on this path is an ancestor of X or Y in G.

Def. If there is a possibly directed path from X to Y (or if X = Y ) then
Y is a possible descendent of X . Let possDe(X ,G) denote the set of
possible descendents of X .
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Backdoor criterion for MAGs/PAGs

Theorem.2 Let X and Y be two distinct vertices in a causal DAG,
CPDAG, MAG, or PAG G. Let R and RX be defined as above. If
Y ∈ Adj(X ,RX ) or Dsep(X ,Y ,RX ) ∩ possDe(X ,G) 6= ∅, then
p(y | do(x)) is not identifiable via the generalized backdoor criterion.
Otherwise Dsep(X ,Y ,RX ) satisfies the generalized backdoor criterion
relative to (X ,Y ) and G.

That is, when Dsep(X ,Y ) satisfies this criterion, it is sufficient to adjust
for the variables in Dsep(X ,Y ,RX ) to estimate the causal effect of X on
Y .

2Maathuis and Colombo (2015) “A generalized back-door criterion,” Annals of
Statistics, 43(3), 1060-1088.
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Assumptions on the structural equations

In the methods discussed so far, we’ve allowed that the structural
equations are arbitrary unknown functions (at least, in principle!):

Xi = fi (Pa(Xi ,G), εi ) ∀i ∈ {1, ..., p}

However, an alternative approach to structure learning makes explicit
assumptions on the structural equations. Such assumptions can imply
asymmetries in the observed data, which can be used to tease apart
different structures. For example, consider a linear model:

Xi =
∑

Xj∈Pa(Xi ,G)

βjXj + εi ∀i ∈ {1, ..., p}
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Linear models

Linear models are very common in some areas of applied analysis,
particularly because they are convenient to analyze or estimate. However,
it is easy to encounter examples for which linearity is obviously false, and
not an appropriate assumption! If one does have reason to expect
relationships to be linear, this can be used to significant advantage.
Consider the case:

Xi =
∑

Xj∈Pa(Xi ,G)

βjXj + εi

∀i with ε1, ..., εp assumed to be mutually independent and non-Gaussian.
The combination of linearity and non-Gaussianity3 makes it possible to
identify the direction between variables.

3Note: Gaussian error terms + linear functions =⇒ Gaussian joint distribution. A
Gaussian joint distribution =⇒ linear functions. However, linear functions by
themselves do not imply Gaussianity: you can have models which are linear, with
non-Gaussian errors, which =⇒ non-Gaussian joint distribution.
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From Hoyer et al. (2008) “Estimation of causal effects using linear non-Gaussian causal models with hidden variables,” Int. Jour.
of Approx. Reasoning 49: 362-378. Last 2 columns show induced distributions over x1, x2 with Gaussian and Uniform noise,
respectively.
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LiNGAM

There are a number of algorithms based on the linear non-Gaussian acyclic
model (“LiNGAM”), with or without allowing for latent variables.4 These
typically use results from Independent Component Analysis (ICA) to
identify a causal structure consistent with observed data.

When there are no latent variables, these algorithms may identify a unique
DAG, rather than an equivalence class. That’s because the algorithms
exploit information besides conditional independence constraints: the
implications of linearity and non-Gaussianity assumptions.
⇒ you may draw stronger conclusions if you make stronger assumptions;
but, those stronger assumptions may be wrong!

4See Shimizu (2014) “LiNGAM: Non-Gaussian methods for estimating causal
structures,” Behaviormetrika 41(1): 65-98.
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LiNGAM
Consider the case with no latent variables, as a matrix equation:

X = BX + ε

X = Aε

where A = (I − B)−1 and ε’s are mutually independent. If Bij 6= 0 then
Xj → Xi . LiNGAM methods use ICA to obtain an estimate of the mixing
matrix A.

Actually, ICA typically focuses on estimating the inverse W = A−1.
Specifically the algorithm will find a matrix Ŵ∗ such that:

ε̂ = Ŵ∗X

with ε̂ mutually independent by minimizing I (ε̂) =
∑p

i=1 H(ε̂i )− H(ε̂)
where H(ε̂) = E[− log p(ε̂)]. It can be shown that this mutual information
metric is minimized when the elements of ε are mutually independent
(which is what the model assumes).
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LiNGAM

Since ICA only determines Ŵ∗ up to a permutation of the columns and a
scaling factor, the algorithm will permute and normalize the result
appropriately to compute B̂, pruning coefficients close to zero if they are
“small.”

ICA solves the “cocktail party problem”: recovering the “source” signals
from “microphones” which linearly mix them. Fast algorithms for doing
this have been explored in the engineering literature.
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LV-LiNGAM

To allow for latent variables one may use overcomplete ICA: more
“sources” than than “microphones.”5

Need to estimate A in X = Ae where A is non-square and we have only
observed the variables in X . For example:

(
X1

X2

)
=

[
α β γ
δ η ξ

]e1

e2

u



5See Hoyer et al. (2008) “Estimation of causal effects using linear non-Gaussian
causal models with hidden variables,” Int. Jour. of Approx. Reasoning 49: 362-378.
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LV-LiNGAM

Very roughly...

Let x (n) denote the data matrix with sample size n and θ denote the full
set of LV-LiNGAM parameters.

If the distribution of each error term is represented by a weighted mixture
of Gaussians, then p(x (n)|θ) can be expressed in closed form.

Under some assumptions, we can find the θ̂ that maximizes p(x (n)|θ) using
an Expectation-Maximization (EM) algorithm.
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Practical issues

Since (overcomplete) ICA leaves indeterminacy wrt permutations of
columns and does not produce exact zeros, various heuristics (search over
possible permutations, shrinking “small” coefficients to zero, etc.) are
involved in applying LV-LiNGaM.

Also in this case multiple models may be observationally equivalent, and
so the procedure does not return a unique DAG.
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LiNGAM etc.

Pro:

I By assuming linear non-Gaussian SEMs, algs can sometimes identify a
unique DAG (assuming no unmeasured confounding) or a small
equivalence class (allowing for unmeasured confounding)

Cons:

I Even with non-Gaussian errors, linearity assumption is very strong and
unlikely to hold

I Statistical (asymptotic) properties of ICA-based algorithms are
unknown/complicated, may depend on “degree of non-Gaussianity”

I If errors are too close to Gaussian or too non-Gaussian, may not
perform well

I In practice, requires large sample sizes and small dimension p
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Additive noise nodels

Another class of models assumes only that the noise terms enter into the
function additively:

Xi = fi (Pa(Xi ,G)) + εi

the functions fi may be nonlinear (though are usually assumed to be
differentiable). Somewhat surprisingly, assuming additive Gaussian noise +
nonlinear functions is sufficient to identify the causal structure.

Note that the ANM is not closed under marginalization. If you start
with an ANM over X ∪ L, then the marginal model over X may no longer
be in the ANM class. =⇒ in settings with latent variables, ANMs are
difficult to justify.
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Post-nonlinear causal models

Another class of models adds a nonlinear transformation on the additive
noise model. Consider Xj → Xi . The PNL model asserts

Xj = f2(f1(Xi ) + εj) εj ⊥⊥ Xi

If the opposite direction Xj → Xi holds true, then

Xi = g2(g1(Xj) + εi ) εi ⊥⊥ Xj

One may prove that under some technical conditions, Xj → Xi and
Xj ← Xi can be distinguished from the data.
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Exploiting asymmetries

All of these semi-parametric methods impose some
assumptions/restrictions on the structural equations, and derive some
asymmetry in the observed data distribution from these assumptions.
Then, check if the data exhibits the supposed asymmetry to try and infer
backwards to the generating model.

In general, it difficult to establish properties of such methods and also
computationally quite difficult to scale them up to large multivariate
systems.

However, they can sometimes be combined with nonparametric methods
like PC, etc to get more informative output. Also, new methods are being
developed all the time.
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Differentiable causal discovery

A recent approach to discovery combines score-based selection w/ ideas
from continuous optimization (+ in practice, semi-parametric
assumptions).

I Assume that the true DGP is an SEM with parameter matrix θ and
G(θ) the corresponding induced graph.

I Let G denote the space of possible graphs (e.g., all DAGs over X ).

I Finally, let S(X ; θ) denote a consistent score that is minimized at the
true θ.

Recast the discrete optimization problem as a continuous program:

min
θ∈Θ

S(X ; θ)

s.t. G(θ) ∈ G
⇐⇒

min
θ∈Θ

S(X ; θ)

s.t. h(θ) = 0.

h(θ) is a differentiable function that = 0 iff G(θ) ∈ G

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 2 46 / 56



Differentiable causal discovery for DAGs

Consider linear SEMs: Xi =
∑

j∈V θjiXj + εi w/ independent errors

and let G denote the space of DAGs. Can show that

h(θ) = tr(eθ◦θ)− p = 0

iff G(θ) is a DAG, where ◦ is the Hadamard product and eA is the matrix
exponential of A.

min
θ∈Θ

S(X ; θ)

s.t. G(θ) ∈ G
⇐⇒

min
θ∈Θ

S(X ; θ)

s.t. tr(eθ◦θ)− p = 0.

The gradient ∇h(θ) = (eθ◦θ)T ◦ 2θ has closed form and so this can be
solved by SOA constrainted optimization techniques (e.g., augmented
Langrangian w/ dual ascent).
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Differentiable causal discovery for ADMGs

Consider linear SEMs w/ correlated errors:
Xi =

∑
j∈V δjiXj + εi and β = E[εεT ]

and let G denote the space of ancestral graphs. Can show that

h(δ, β) = tr(eδ◦δ)− p + sum(eδ◦δ ◦ (β′ ◦ β′)) = 0

iff G(δ, β) is ancestral, where β′ij = βij for i 6= j and 0 otherwise.

Autograd can be used to obtain analytic gradients for an augmented
Lagrangian optimization scheme.
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Solving the continuous program

min
θ∈Θ

S(X ; θ) +
ρ

2
|h(θ)|2 + αh(θ),

where ρ is the penalty weight and α is the Lagrange multiplier.

Then solve the dual equation: αk+1 ← αk + ρkh(θk)

Lots to be said about the stability and convergence properties of diff
optimization schemes here, but I am not knowledgable about this.

See, e.g., Ng et al. (2020) “On the convergence of continuous constrained
optimization for structure learning” arXiv: 2011.11150.
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Scores for differentiable causal discovery

Zheng et al. (2018) us an `1-penalized likelihood for (DAGs) whereas
Bhattacharya et al. (2021) use (for ADMGs) an approximation to the BIC
score.

NB: fitting likelihoods for (linear) ancestral ADMGs is a bit tricky –
Bhattacharya et al. use the residual iterative proportional fitting (RICF)
procedure (Drton et al. 2009).

NB: for both DAGs and ancestral ADMGs, the procedure is blind to
equivalence class considerations. If the score is consistent and a global
optima is achieved, then output should be Markov equivalent to the true
G. One option is to transform the output into the corresponding CPDAG
or PAG. Local optima may be an issue.
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Differentiable causal discovery for ADMGs

Bhattacharya et al. (2021) extend this idea to additional classes of
ADMGs, i.e., Arid and Bow-free ADMGs, that can be more informative
than ancestral graphs because they encode general equality constraints
(Verma constraints) in addition to conditional independence constraints.

Learning Arid or Bow-free ADMGs is an interesting direction for causal
discovery, but there are many challenges and unknowns, esp. because there
is no convenient characterization of Markov equivalence for these graphs.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 2 51 / 56



Permutation-based causal discovery

Permutation-based algorithms formulate the discovery problem as a search
over possible (partial) causal orderings of the vertices in a graph:

arg max
π∈Π

S(Gπ)

where

S(Gπ) =

{
−|Gπ| if Gπ is Markov wrt I(Gπ)

−∞ otherwise.

each (partial) order in Π induces a graph Gπ and a set of conditional
independence constraints I(Gπ). The score compares graphs by their
sparsity, and the major challenge is to find a way to efficiently traverse the
space of orderings Π.

In practice, we do not know I(Gπ) but rather execute a sequence of
conditional independence tests depending on the ordering π.
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Permutation-based causal discovery

arg max
π∈Π

S(Gπ)

Solus et al. (2018) present a greedy search procedure over the space of
total causal orderings (DAGs) and show that it is consistent.

Bernstein et al. (2020) present a greedy search over partial causal
(ancestral) orderings (MAGs).
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Structure learning algorithms... incomplete list

DAGs/CPDAGs:

I PC ( + variants), GES, ARGES, GSP, MMHC, ICA-LiNGAM,
directLiNGAM, CAM, SAT-methods, NOTEARS (+ variants)

MAGs/PAGs/ADMGs:

I FCI, RFCI, FCI+, GFCI, GSPo, LV-LiNGAM, M3HC, SAT-methods,
Differentiable CD

Cyclic graphs:

I CCD, LiNG, bcause, Two-Step, SAT-methods

constraint-based, score-based, hybrid, semiparametric, other
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Software packages for structure learning

R:
pcalg
bnlearn

Python:
pcalg.py
causal discovery toolbox (cdt)
causal-learn
ananke

Java:
TETRAD

Matlab:
Bayes net toolbox

+ various implementations available from authors of papers
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Open problems

I Better general-purpose nonparametric conditional independence tests

I Consistent, scaleable, nonparametric, and more accurate algs for
learning MAGs/PAGs/ADMGs

I Characterizations of Markov equivalence for general ADMGs

I Better understanding and methods for learning graphs w/
confounding + cycles (DMGs)

I Consistency results that weaken “strong faithfulness” assumption

I Post-selection inference

I . . .
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