Introduction to Causal Discovery

Daniel Malinsky
Columbia University d.malinsky@columbia.edu

Part 2: Unmeasured Confounding and More Recent Developments/Challenges

Latent (hidden) variables

In reality, the "true" causal process probably includes a bunch of variables not represented in our data. Unmeasured variables are called "latent" or "hidden" and these pose a real problem for causal inference and causal learning.

Latent (hidden) variables

In reality, the "true" causal process probably includes a bunch of variables not represented in our data. Unmeasured variables are called "latent" or "hidden" and these pose a real problem for causal inference and causal learning.

For example, the underlying causal process may be described by a DAG $\mathcal{G}=(V, E)$ with vertices $V=X \cup L$, but we only observe X.

Latent variables from a structure learning point-of-view

Consider two observed variables X and Y which are known to be dependent. What causal processes may explain this dependence?

+ combinations of f) \& g) with the others.

Latent variables from a structure learning point-of-view

Consider two observed variables X and Y which are judged to be dependent. What causal processes may explain this dependence? exclude feedback and selection bias for the time being.)

How could we possibly distinguish between these possibilities from (observed) conditional (in)dependence facts alone?

Distinguishing "real" causality from latent confounding

 In general, with just two variables (+ no background knowledge about the latents, no other assumptions) we cannot distinguish between those possibilities. They all imply the same restrictions on the distribution $p(x, y)$: i.e., no restrictions at all.However, with >2 variables, some patterns of independence may help narrow down the structure (assuming faithfulness).

Distinguishing "real" causality from latent confounding

 In general, with just two variables (+ no background knowledge about the latents, no other assumptions) we cannot distinguish between those possibilities. They all imply the same restrictions on the distribution $p(x, y)$: i.e., no restrictions at all.However, with >2 variables, some patterns of independence may help narrow down the structure (assuming faithfulness).

For example:

$\Rightarrow Y$ and Z are not independent given X. (Why?)

Distinguishing "real" causality from latent confounding

In general, with just two variables (+ no background knowledge about the latents, no other assumptions) we cannot distinguish between those possibilities. They all imply the same restrictions on the distribution $p(x, y)$: i.e., no restrictions at all.

However, with >2 variables, some patterns of independence may help narrow down the structure (assuming faithfulness).

For example:

$$
Z \longrightarrow X \longrightarrow Y
$$

$\Rightarrow Y$ and Z are independent given X. (Why?)

Patterns of independence constraints may rule out latent confounding

$$
\begin{aligned}
& Z_{1} \Perp Z_{2} \\
& Z_{1} \not \Perp Z_{2} \mid X \\
& Y \not \Perp\left\{Z_{1}, Z_{2}\right\} \\
& Y \not \Perp \neq Z_{1} \mid X \\
& Y \not \Perp \not Z_{2} \mid X
\end{aligned}
$$

Patterns of independence constraints may rule out latent confounding

$$
\begin{aligned}
& Z_{1} \Perp Z_{2} \\
& Z_{1} \not \Perp Z_{2} \mid X \\
& Y \not \Perp\left\{Z_{1}, Z_{2}\right\} \\
& Y \Perp Z_{1} \mid X \\
& Y \Perp Z_{2} \mid X
\end{aligned}
$$

Patterns of independence constraints may also suggest latent confounding

$X_{1} \not \Perp X_{2}$ and $X_{2} \not \Perp X_{3}$ and $X_{3} \nVdash X_{4}$
$X_{1} \Perp X_{4}$ and $X_{1} \Perp X_{3}$ and $X_{2} \Perp X_{4}$
$X_{1} \not \Perp X_{3} \mid X_{2}$
$X_{2} \notin X_{4} \mid X_{3}$

Patterns of independence constraints may also suggest latent confounding

$X_{1} \nVdash X_{2}$ and $X_{2} \nVdash X_{3}$ and $X_{3} \nVdash X_{4}$ $X_{1} \Perp X_{4}$ and $X_{1} \Perp X_{3}$ and $X_{2} \Perp X_{4}$
$X_{1} \notin X_{3} \mid X_{2}$
$X_{2} \not \Perp X_{4} \mid X_{3}$
\Rightarrow may represent the independence model with a mixed graph

Constraint-based structure learning in the presence of latent variables

The assumption of causal sufficiency is rarely warranted in practice!

Fortunately, there exist procedures that allow for arbitrary latent variables. One constraint-based procedure, which follows similar logic to PC, is called the FCl (Fast Causal Inference) algorithm.

We don't want to perform search for the best DAG (or CPDAG) which "fits" the data, since in general no DAG over X will do. We have to consider searching over a different space of graphs.

Latent projections

Beginning with a DAG \mathcal{G}, it is useful to think about the induced dependence structure when some variables have been marginalized out. The conditional independence relations in the marginal distribution are represented by an ADMG. One may construct an ADMG via the operation of latent projection.

Consider a DAG $\mathcal{G}=(V, E)$ with vertex set $V=X \cup L$. The latent projection $\mathcal{G}^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a mixed graph with vertex set $V^{\prime}=X$ such that:

- for any $X_{i}, X_{j} \in X$ there is an edge $X_{i} \rightarrow X_{j}$ if there exists a directed path from X_{i} to X_{j} in \mathcal{G}, with all intermediate nodes on the path in L
- there is an edge $X_{i} \leftrightarrow X_{j}$ if there exists a path from X_{i} to X_{j} of the form $X_{i} \leftarrow \cdots \rightarrow X_{j}$, where every intermediate node on the path is in L and no consecutive edges on the path are of the form $\rightarrow L_{k} \leftarrow$ for $L_{k} \in L$.

Latent projections

Note that an infinite number of distinct latent variable DAGs will share the same latent projection ADMG!

ADMGs

ADMGs preserve conditional independence relations among the observed variables. There is a separation criterion which generalizes d-separation to structures with bidirected edges: m-separation.

For A, B, C disjoint subsets of $X: A \perp{ }_{d}^{\mathcal{G}} B\left|C \Longleftrightarrow A \perp{ }_{m}^{\mathcal{G}^{\prime}} B\right| C$.

Direct structure learning of ADMGs is hard, not well-developed

Though ADMGs have a relatively clear causal interpretation, some nice properties, and lots of associated theory, they are not ideal targets for structure learning. Why?

- Markov equivalence for ADMGs is complicated
- Parameterization of ADMGs is complicated (except for binary variables)
- ADMGs are not maximal

Maximality

Def. A graph \mathcal{G} is said to be maximal if for every pair of vertices X_{i}, X_{j}

$$
X_{i} \notin \operatorname{Adj}\left(X_{j}, \mathcal{G}\right) \Longrightarrow \exists X_{S} \subseteq X \backslash\left\{X_{i}, X_{j}\right\} \text { such that } X_{i} \Perp X_{j} \mid X_{S}
$$

Thus a graph is maximal if every missing edge corresponds to at least one independence in the model. No additional edge may be added to a maximal graph without changing the independence model. (DAGs are maximal. ADMGs are not.)

Non-maximal ADMG

Maximal Ancestral Graphs

To make a PC-style search procedure possible, we focus on a class of graphs called Maximal Ancestral Graphs (MAGs). For the purposes of the present discussion, we can view MAGs as a special type of ADMG.

$$
\text { Def. If } X_{i} \leftrightarrow X_{j} \text { in } \mathcal{G} \text { then } X_{i} \in \operatorname{Sp}\left(X_{j}, \mathcal{G}\right)
$$

Def. A (directed) ${ }^{1}$ ancestral graph \mathcal{G} is a mixed graph (\rightarrow and \leftrightarrow edges) such that $\forall X_{i} \in X, X_{i} \notin \operatorname{An}\left(\operatorname{Pa}\left(X_{i}, \mathcal{G}\right) \cup \operatorname{Sp}\left(X_{i}, \mathcal{G}\right), \mathcal{G}\right)$. That is, an ancestral graph does not contain any directed or almost directed cycles.

Def. A MAG is an ancestral graph that is maximal.

[^0]
Maximal Ancestral Graphs

MAGs have some pros and cons.
Pros:

- They are maximal, so if we find a conditional independence we can remove an edge in a PC-style search.
- We can characterize Markov equivalent MAGs.
- They have other "nice" properties of ADMGs, m-separation works out, etc.

Cons:

- They have a somewhat confusing interpretation!
- Less "informative" than ADMGs

Maximal Ancestral Graphs

$X_{i} \rightarrow X_{j}$ in a MAG means that X_{i} is an ancestor of X_{j} in the underlying DAG \mathcal{G}.
$X_{i} \leftrightarrow X_{j}$ means that X_{i} is not an ancestor of X_{j} and X_{j} is not an ancestor of X_{i}, which implies that there is a latent common cause of X_{i} and X_{j} in \mathcal{G}.

NB: An ancestral relationship + latent confounding can coexist! So just because $X_{i} \rightarrow X_{j}$ in a MAG does not mean there is no latent common cause between X_{i} and X_{j}.

$$
X_{i} \longrightarrow X_{j} \quad \ldots \text { in a MAG }
$$

... may hide in the underlying DAG

Maximal Ancestral Graphs

We can construct a MAG from a DAG by a procedure similar to latent projection.

Def. An inducing path relative to L is a path on which every vertex not in L (except for the endpoints) is a collider on the path and every collider is an ancestor of an endpoint of the path.

Start with a DAG \mathcal{G} over $V=X \cup L$ and construct a MAG \mathcal{G}^{\prime} over $V^{\prime}=X$:

- for each pair of variables $X_{i}, X_{j} \in X, X_{i}$ and X_{j} are adjacent in \mathcal{G}^{\prime} iff there is an inducing path between them relative to L in \mathcal{G}.
- for each pair of adjacent variables X_{i}, X_{j} in \mathcal{G}^{\prime}, orient the edge as $X_{i} \rightarrow X_{j}$ in \mathcal{G}^{\prime} if $X_{i} \in \operatorname{An}\left(X_{j}, \mathcal{G}\right)$; orient it as $X_{i} \leftarrow X_{j}$ in \mathcal{G}^{\prime} if $X_{j} \in \operatorname{An}\left(X_{i}, \mathcal{G}\right)$; orient it as $X_{i} \leftrightarrow X_{j}$ in \mathcal{G}^{\prime} otherwise.

Maximal Ancestral Graphs

A MAG will have "extra" adjacencies that do not correspond to adjacencies in the underlying DAG. These are adjacencies induced by the latent confounders, and which must be there to preserve maximality.

Partial Ancestral Graphs

A Markov equivalence class of MAGs is represented by a PAG. A PAG is a mixed graph that has \circ and $\circ-$ edges to represent uncertainty about edge endpoints. o can correspond to a "tail" or "arrowhead."

$$
X_{1} \bigcirc \longrightarrow X_{2} \longleftrightarrow X_{3} \longleftrightarrow X_{4} \circ \longrightarrow X_{5}
$$

Just like a CPDAG represents a set of DAGs, a PAG represents a set of MAGs that each imply the same set of independence constraints.

Figure 2: A causal DAG with a latent variable.

Figure 3: Two Markov Equivalent MAGs.

Figure 4: The PAG in our five-variable example.

```
Algorithm 0.1: \(\mathrm{FCI}(\mathrm{TEST}, \alpha)\)
Input: Samples of the vector \(X=\left(X_{1}, \ldots, X_{p}\right)^{\prime}\)
Output: PAG \(\mathcal{P}\)
1. Form the complete graph \(\mathcal{P}\) on vertex set \(X\) with o-o edges.
2. \(s \leftarrow 0\)
3. repeat
4. for all pairs of adjacent vertices \(\left(X_{i}, X_{j}\right)\) s.t. \(\left|\operatorname{Adj}\left(X_{i}, \mathcal{P}\right) \backslash\left\{X_{j}\right\}\right| \geq s\)
                                and subsets \(X_{S} \subset \operatorname{Adj}\left(X_{i}, \mathcal{P}\right) \backslash\left\{X_{j}\right\}\) s.t. \(|S|=s\)
                                    if \(X_{i} \Perp X_{j} \mid X_{S}\) according to (TEST, \(\alpha\) )
                    then \(\left\{\begin{array}{l}\text { Delete edge } X_{i} \text { ○○ } X_{j} \text { from } \mathcal{P} . \\ \text { Let } \operatorname{sepset}\left(X_{i}, X_{j}\right)=\operatorname{sepset}\left(X_{j}, X_{i}\right)=X_{S} .\end{array}\right.\)
    end
    \(s \leftarrow s+1\)
    until for each pair of adjacent vertices \(\left(X_{i}, X_{j}\right),\left|\operatorname{Adj}\left(X_{i}, \mathcal{P}\right) \backslash\left\{X_{j}\right\}\right|<s\).
9. for all triples \(\left(X_{i}, X_{k}, X_{j}\right)\) s.t. \(X_{i} \in \operatorname{Adj}\left(X_{k}, \mathcal{P}\right)\) and \(X_{j} \in \operatorname{Adj}\left(X_{k}, \mathcal{P}\right)\)
    but \(X_{i} \notin \operatorname{Adj}\left(X_{j}, \mathcal{P}\right)\), orient \(X_{i} * X_{k} \leftarrow X_{j}\) iff \(X_{k} \notin \operatorname{sepset}\left(X_{i}, X_{j}\right)\).
10. for all pairs \(\left(X_{i}, X_{j}\right)\) adjacent in \(\mathcal{P}\) if \(\exists X_{S}\) s.t.
    \(X_{S} \in \operatorname{pds}\left(X_{i}, X_{j}, \mathcal{P}\right)\) or \(X_{S} \in \operatorname{pds}\left(X_{j}, X_{i}, \mathcal{P}\right)\) and \(X_{i} \Perp X_{j} \mid X_{S}\) according to (Test, \(\alpha\) )
    then \(\left\{\begin{array}{l}\text { Delete edge } X_{i} * * X_{j} \text { from } \mathcal{P} . \\ \text { Let } \operatorname{sepset}\left(X_{i}, X_{j}\right)=\operatorname{sepset}\left(X_{j}, X_{i}\right)=X_{S} .\end{array}\right.\)
11. Reorient all edges as \(\bigcirc \circ\) and repeat step 9.
12. Exhaustively apply orientation rules (R1-R10) in Zhang (2008b) to orient
        remaining endpoints.
13. return \(\mathcal{P}\).
```

Let $X \in \operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$ if and only if $X \neq X_{i}, X \neq X_{j}$, and there is a path π between X_{i} and X in \mathcal{G} such that for every subpath $\left\langle X_{m}, X_{l}, X_{h}\right\rangle$ of π either X_{l} is a collider on the subpath in \mathcal{G} or $\left\langle X_{m}, X_{l}, X_{h}\right\rangle$ is a triangle in \mathcal{G}. A triangle is a triple $\left\langle X_{m}, X_{l}, X_{h}\right\rangle$ where each pair of vertices is adjacent.

Zhang (2008b) refers to "On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias," Artificial Intelligence 172: 1873-1896.

Testing subsets of $\operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$

FCl performs additional tests compared to PC. In particular, it tests subsets of the set $\operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$. This is because:

Theorem. If there exists an $X_{S} \subseteq X \backslash\left\{X_{i}, X_{j}\right\}$ s.t. $X_{i} \perp_{m} X_{j} \mid X_{S}$ in MAG $\mathcal{G}, X_{S} \subseteq \operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$.

Testing subsets of $\operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$

FCI performs additional tests compared to PC . In particular, it tests subsets of the set $\operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$. This is because:

Theorem. If there exists an $X_{S} \subseteq X \backslash\left\{X_{i}, X_{j}\right\}$ s.t. $X_{i} \perp_{m} X_{j} \mid X_{S}$ in MAG $\mathcal{G}, X_{S} \subseteq \operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$.

This is the key to removing edges in FCl , and the first part of the algorithm really exists to in order to be able to compute $\operatorname{pds}\left(X_{i}, X_{j}, \mathcal{G}\right)$.

Example in R using pcalg package...

Visible edges

Def. Given a MAG $\mathcal{M} / \operatorname{PAG} \mathcal{P}$, a directed edge $X \rightarrow Y$ in $\mathcal{M} / \mathcal{P}$ is visible if there is a vertex Z not adjacent to Y, such that there is an edge between Z and X that is into X (has an arrowhead at X), or there is a collider path between Z and X that is into X and every non-endpoint vertex on the path is a parent of Y. Otherwise $X \rightarrow Y$ is said to be invisible. (All directed edges in a DAG/CPDAG are visible.)

Visible edges

Def. Given a MAG $\mathcal{M} /$ PAG \mathcal{P}, a directed edge $X \rightarrow Y$ in $\mathcal{M} / \mathcal{P}$ is visible if there is a vertex Z not adjacent to Y, such that there is an edge between Z and X that is into X (has an arrowhead at X), or there is a collider path between Z and X that is into X and every non-endpoint vertex on the path is a parent of Y. Otherwise $X \rightarrow Y$ is said to be invisible. (All directed edges in a DAG/CPDAG are visible.)

Directed edges that are visible do not "hide" confounders, they correspond to unconfounded causal effects.

Backdoor criterion for MAGs/PAGs

Def. Let X be a vertex in \mathcal{G}, where \mathcal{G} represents a causal DAG, CPDAG, MAG, or PAG. Let \mathcal{R} be a DAG or MAG represented by \mathcal{G}, in the following sense. If \mathcal{G} is a DAG or MAG, we simply let $\mathcal{R}=\mathcal{G}$. If \mathcal{G} is a
CPDAG/PAG, we let \mathcal{R} be a DAG/MAG in the Markov equivalence class described by \mathcal{G} with the same number of edges into X as \mathcal{G}. Let \mathcal{R}_{X} be the graph obtained from \mathcal{R} by removing all directed edges out of X that are visible in \mathcal{P}.

Def. Let X and Y be two distinct vertices in mixed graph \mathcal{G}. We say that $V \in \operatorname{Dsep}(X, Y, \mathcal{G})$ if $V \neq X$ and there is a collider path between X and V in \mathcal{G}, such that every vertex on this path is an ancestor of X or Y in \mathcal{G}.

Def. If there is a possibly directed path from X to Y (or if $X=Y$) then Y is a possible descendent of X. Let possDe (X, \mathcal{G}) denote the set of possible descendents of X.

Backdoor criterion for MAGs/PAGs

Theorem. ${ }^{2}$ Let X and Y be two distinct vertices in a causal DAG, CPDAG, MAG, or PAG \mathcal{G}. Let \mathcal{R} and $\mathcal{R}_{\underline{X}}$ be defined as above. If $Y \in \operatorname{Adj}\left(X, \mathcal{R}_{\underline{X}}\right)$ or $\operatorname{Dsep}\left(X, Y, \mathcal{R}_{\underline{X}}\right) \cap \operatorname{poss} \operatorname{De}(X, \mathcal{G}) \neq \emptyset$, then $p(y \mid \operatorname{do}(x))$ is not identifiable via the generalized backdoor criterion. Otherwise $\operatorname{Dsep}\left(X, Y, \mathcal{R}_{\underline{X}}\right)$ satisfies the generalized backdoor criterion relative to (X, Y) and \mathcal{G}.

That is, when $\operatorname{Dsep}(X, Y)$ satisfies this criterion, it is sufficient to adjust for the variables in $\operatorname{Dsep}\left(X, Y, \mathcal{R}_{\underline{X}}\right)$ to estimate the causal effect of X on Y.

[^1]
References on MAGs, PAGs, and FCI

Ali, Richardson, and Spirtes (2009) "Markov equivalence or ancestral graphs," Annals of Statistics 37(5B): 2808-2837.

Colombo, Maathuis, Kalisch, and Richardson (2012) "Learning high-dimensional directed acyclic graphs with latent and selection variables," Annals of Statistics 40(1): 294-321.

Maathuis and Colombo (2015) "A generalized back-door criterion," Annals of Statistics, 43(3), 1060-1088.

Richardson and Spirtes (2002) "Ancestral graph Markov models," Annals of Statistics 30(4): 962-1030.

Spirtes, Scheines, and Glymour (2000) Causation, Prediction, and Search, MIT Press.
Zhang (2008a) "Causal reasoning with ancestral graphs," JMLR 9: 1437-1474.
Zhang (2008b) "On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias," Artificial Intelligence 172: 1873-1896.

Assumptions on the structural equations

In the methods discussed so far, we've allowed that the structural equations are arbitrary unknown functions (at least, in principle!):

$$
X_{i}=f_{i}\left(\operatorname{Pa}\left(X_{i}, \mathcal{G}\right), \epsilon_{i}\right) \quad \forall i \in\{1, \ldots, p\}
$$

However, an alternative approach to structure learning makes explicit assumptions on the structural equations. Such assumptions can imply asymmetries in the observed data, which can be used to tease apart different structures. For example, consider a linear model:

$$
X_{i}=\sum_{X_{j} \in \operatorname{Pa}\left(X_{i}, \mathcal{G}\right)} \beta_{j} X_{j}+\epsilon_{i} \quad \forall i \in\{1, \ldots, p\}
$$

Linear models

Linear models are very common in some areas of applied analysis, particularly because they are convenient to analyze or estimate. However, it is easy to encounter examples for which linearity is obviously false, and not an appropriate assumption! If one does have reason to expect relationships to be linear, this can be used to significant advantage. Consider the case:

$$
X_{i}=\sum_{X_{j} \in \operatorname{Pa}\left(X_{i}, \mathcal{G}\right)} \beta_{j} X_{j}+\epsilon_{i}
$$

$\forall i$ with $\epsilon_{1}, \ldots, \epsilon_{p}$ assumed to be mutually independent and non-Gaussian. The combination of linearity and non-Gaussianity ${ }^{3}$ makes it possible to identify the direction between variables.

[^2]

From Hoyer et al. (2008) "Estimation of causal effects using linear non-Gaussian causal models with hidden variables," Int. Jour. of Approx. Reasoning 49: 362-378. Last 2 columns show induced distributions over x_{1}, x_{2} with Gaussian and Uniform noise, respectively.

LiNGAM

There are a number of algorithms based on the linear non-Gaussian acyclic model ("LiNGAM"), with or without allowing for latent variables. ${ }^{4}$ These typically use results from Independent Component Analysis (ICA) to identify a causal structure consistent with observed data.

When there are no latent variables, these algorithms may identify a unique DAG, rather than an equivalence class. That's because the algorithms exploit information besides conditional independence constraints: the implications of linearity and non-Gaussianity assumptions.
\Rightarrow you may draw stronger conclusions if you make stronger assumptions; but, those stronger assumptions may be wrong!

[^3]
LiNGAM

Consider the case with no latent variables, as a matrix equation:

$$
\begin{aligned}
& X=B X+\epsilon \\
& X=A \epsilon
\end{aligned}
$$

where $A=(I-B)^{-1}$ and ϵ 's are mutually independent. If $B_{i j} \neq 0$ then $X_{j} \rightarrow X_{i}$. LiNGAM methods use ICA to obtain an estimate of the mixing matrix A.

Actually, ICA typically focuses on estimating the inverse $W=A^{-1}$. Specifically the algorithm will find a matrix \widehat{W}_{*} such that:

$$
\hat{\epsilon}=\widehat{W}_{*} X
$$

with $\hat{\epsilon}$ mutually independent by minimizing $I(\hat{\epsilon})=\sum_{i=1}^{p} H\left(\hat{\epsilon}_{i}\right)-H(\hat{\epsilon})$ where $H(\hat{\epsilon})=\mathbb{E}[-\log p(\hat{\epsilon})]$. It can be shown that this mutual information metric is minimized when the elements of ϵ are mutually independent (which is what the model assumes).

LiNGAM

Since ICA only determines \widehat{W}_{*} up to a permutation of the columns and a scaling factor, the algorithm will permute and normalize the result appropriately to compute \widehat{B}, pruning coefficients close to zero if they are "small."

ICA solves the "cocktail party problem": recovering the "source" signals from "microphones" which linearly mix them. Fast algorithms for doing this have been explored in the engineering literature.

LV-LiNGAM

To allow for latent variables one may use overcomplete ICA: more "sources" than than "microphones." 5

Need to estimate \mathbf{A} in $\mathbf{X}=\mathbf{A e}$ where \mathbf{A} is non-square and we have only observed the variables in X. For example:

$$
\binom{X_{1}}{X_{2}}=\left[\begin{array}{lll}
\alpha & \beta & \gamma \\
\delta & \eta & \xi
\end{array}\right]\left(\begin{array}{l}
e_{1} \\
e_{2} \\
u
\end{array}\right)
$$

[^4]
LV-LiNGAM

Very roughly...
Let $x^{(n)}$ denote the data matrix with sample size n and θ denote the full set of LV-LiNGAM parameters.

If the distribution of each error term is represented by a weighted mixture of Gaussians, then $p\left(x^{(n)} \mid \theta\right)$ can be expressed in closed form.

Under some assumptions, we can find the $\hat{\theta}$ that maximizes $p\left(x^{(n)} \mid \theta\right)$ using an Expectation-Maximization (EM) algorithm.

Practical issues

Since (overcomplete) ICA leaves indeterminacy wrt permutations of columns and does not produce exact zeros, various heuristics (search over possible permutations, shrinking "small" coefficients to zero, etc.) are involved in applying LV-LiNGaM.

Also in this case multiple models may be observationally equivalent, and so the procedure does not return a unique DAG.

LiNGAM etc.

Pro:

- By assuming linear non-Gaussian SEMs, algs can sometimes identify a unique DAG (assuming no unmeasured confounding) or a small equivalence class (allowing for unmeasured confounding)

Cons:

- Even with non-Gaussian errors, linearity assumption is very strong and unlikely to hold
- Statistical (asymptotic) properties of ICA-based algorithms are unknown/complicated, may depend on "degree of non-Gaussianity"
- If errors are too close to Gaussian or too non-Gaussian, may not perform well
- In practice, requires large sample sizes and small dimension p

Additive noise nodels

Another class of models assumes only that the noise terms enter into the function additively:

$$
X_{i}=f_{i}\left(\operatorname{Pa}\left(X_{i}, \mathcal{G}\right)\right)+\epsilon_{i}
$$

the functions f_{i} may be nonlinear (though are usually assumed to be differentiable). Somewhat surprisingly, assuming additive Gaussian noise + nonlinear functions is sufficient to identify the causal structure.

Note that the ANM is not closed under marginalization. If you start with an ANM over $X \cup L$, then the marginal model over X may no longer be in the ANM class. \Longrightarrow in settings with latent variables, ANMs are difficult to justify.

Post-nonlinear causal models

Another class of models adds a nonlinear transformation on the additive noise model. Consider $X_{j} \rightarrow X_{i}$. The PNL model asserts

$$
X_{j}=f_{2}\left(f_{1}\left(X_{i}\right)+\epsilon_{j}\right) \quad \epsilon_{j} \Perp X_{i}
$$

If the opposite direction $X_{j} \rightarrow X_{i}$ holds true, then

$$
X_{i}=g_{2}\left(g_{1}\left(X_{j}\right)+\epsilon_{i}\right) \quad \epsilon_{i} \Perp X_{j}
$$

One may prove that under some technical conditions, $X_{j} \rightarrow X_{i}$ and $X_{j} \leftarrow X_{i}$ can be distinguished from the data.

Exploiting asymmetries

All of these semi-parametric methods impose some assumptions/restrictions on the structural equations, and derive some asymmetry in the observed data distribution from these assumptions. Then, check if the data exhibits the supposed asymmetry to try and infer backwards to the generating model.

In general, it difficult to establish properties of such methods and also computationally quite difficult to scale them up to large multivariate systems.

However, they can sometimes be combined with nonparametric methods like PC, etc to get more informative output. Also, new methods are being developed all the time.

Differentiable causal discovery

A recent approach to discovery combines score-based selection w/ ideas from continuous optimization (+ in practice, semi-parametric assumptions).

- Assume that the true DGP is an SEM with parameter matrix θ and $\mathcal{G}(\theta)$ the corresponding induced graph.
- Let \mathbb{G} denote the space of possible graphs (e.g., all DAGs over X).
- Finally, let $S(X ; \theta)$ denote a consistent score that is minimized at the true θ.

Recast the discrete optimization problem as a continuous program:

$h(\theta)$ is a differentiable function that $=0$ iff $\mathcal{G}(\theta) \in \mathbb{G}$

Differentiable causal discovery for DAGs

Consider linear SEMs: $X_{i}=\sum_{j \in V} \theta_{j i} X_{j}+\epsilon_{i} \mathrm{w} /$ independent errors and let \mathbb{G} denote the space of DAGs. Can show that

$$
h(\theta)=\operatorname{tr}\left(e^{\theta \circ \theta}\right)-p=0
$$

iff $\mathcal{G}(\theta)$ is a DAG, where \circ is the Hadamard product and e^{A} is the matrix exponential of A.

Differentiable causal discovery for DAGs

Consider linear SEMs: $X_{i}=\sum_{j \in V} \theta_{j i} X_{j}+\epsilon_{i} \mathrm{w} /$ independent errors and let \mathbb{G} denote the space of DAGs. Can show that

$$
h(\theta)=\operatorname{tr}\left(e^{\theta \circ \theta}\right)-p=0
$$

iff $\mathcal{G}(\theta)$ is a DAG, where \circ is the Hadamard product and e^{A} is the matrix exponential of A.

The gradient $\nabla h(\theta)=\left(e^{\theta \circ \theta}\right)^{T} \circ 2 \theta$ has closed form and so this can be solved by SOA constrainted optimization techniques (e.g., augmented Langrangian w/ dual ascent).

Differentiable causal discovery for ADMGs

Consider linear SEMs w/ correlated errors:
$X_{i}=\sum_{j \in V} \delta_{j i} X_{j}+\epsilon_{i}$ and $\beta=\mathbb{E}\left[\epsilon \epsilon^{T}\right]$
and let \mathbb{G} denote the space of ancestral graphs. Can show that

$$
h(\delta, \beta)=\operatorname{tr}\left(e^{\delta \circ \delta}\right)-p+\operatorname{sum}\left(e^{\delta \circ \delta} \circ\left(\beta^{\prime} \circ \beta^{\prime}\right)\right)=0
$$

iff $\mathcal{G}(\delta, \beta)$ is ancestral, where $\beta_{i j}^{\prime}=\beta_{i j}$ for $i \neq j$ and 0 otherwise.

Differentiable causal discovery for ADMGs

Consider linear SEMs w/ correlated errors:
$X_{i}=\sum_{j \in V} \delta_{j i} X_{j}+\epsilon_{i}$ and $\beta=\mathbb{E}\left[\epsilon \epsilon^{T}\right]$
and let \mathbb{G} denote the space of ancestral graphs. Can show that

$$
h(\delta, \beta)=\operatorname{tr}\left(e^{\delta \circ \delta}\right)-p+\operatorname{sum}\left(e^{\delta \circ \delta} \circ\left(\beta^{\prime} \circ \beta^{\prime}\right)\right)=0
$$

iff $\mathcal{G}(\delta, \beta)$ is ancestral, where $\beta_{i j}^{\prime}=\beta_{i j}$ for $i \neq j$ and 0 otherwise.
Autograd can be used to obtain analytic gradients for an augmented Lagrangian optimization scheme.

Solving the continuous program

$$
\min _{\theta \in \Theta} S(X ; \theta)+\frac{\rho}{2}|h(\theta)|^{2}+\alpha h(\theta),
$$

where ρ is the penalty weight and α is the Lagrange multiplier.
Then solve the dual equation: $\alpha^{k+1} \leftarrow \alpha^{k}+\rho^{k} h\left(\theta^{k}\right)$

Solving the continuous program

$$
\min _{\theta \in \Theta} S(X ; \theta)+\frac{\rho}{2}|h(\theta)|^{2}+\alpha h(\theta)
$$

where ρ is the penalty weight and α is the Lagrange multiplier.
Then solve the dual equation: $\alpha^{k+1} \leftarrow \alpha^{k}+\rho^{k} h\left(\theta^{k}\right)$
Lots to be said about the stability and convergence properties of diff optimization schemes here, but I am not knowledgable about this.

See, e.g., Ng et al. (2020) "On the convergence of continuous constrained optimization for structure learning" arXiv: 2011.11150.

Scores for differentiable causal discovery

Zheng et al. (2018) us an ℓ_{1}-penalized likelihood for (DAGs) whereas Bhattacharya et al. (2021) use (for ADMGs) an approximation to the BIC score.

NB: fitting likelihoods for (linear) ancestral ADMGs is a bit tricky Bhattacharya et al. use the residual iterative proportional fitting (RICF) procedure (Drton et al. 2009).

NB: for both DAGs and ancestral ADMGs, the procedure is blind to equivalence class considerations. If the score is consistent and a global optima is achieved, then output should be Markov equivalent to the true \mathcal{G}. One option is to transform the output into the corresponding CPDAG or PAG. Local optima may be an issue.

Differentiable causal discovery for ADMGs

Bhattacharya et al. (2021) extend this idea to additional classes of ADMGs, i.e., Arid and Bow-free ADMGs, that can be more informative than ancestral graphs because they encode general equality constraints (Verma constraints) in addition to conditional independence constraints.

Learning Arid or Bow-free ADMGs is an interesting direction for causal discovery, but there are many challenges and unknowns, esp. because there is no convenient characterization of Markov equivalence for these graphs.

Permutation-based causal discovery

Permutation-based algorithms formulate the discovery problem as a search over possible (partial) causal orderings of the vertices in a graph:

$$
\underset{\pi \in \Pi}{\arg \max } S\left(\mathcal{G}_{\pi}\right)
$$

where

$$
S\left(\mathcal{G}_{\pi}\right)= \begin{cases}-\left|\mathcal{G}_{\pi}\right| & \text { if } \mathcal{G}_{\pi} \text { is Markov wrt } \mathcal{I}\left(\mathcal{G}_{\pi}\right) \\ -\infty & \text { otherwise }\end{cases}
$$

each (partial) order in Π induces a graph \mathcal{G}_{π} and a set of conditional independence constraints $\mathcal{I}\left(\mathcal{G}_{\pi}\right)$. The score compares graphs by their sparsity, and the major challenge is to find a way to efficiently traverse the space of orderings Π.

Permutation-based causal discovery

Permutation-based algorithms formulate the discovery problem as a search over possible (partial) causal orderings of the vertices in a graph:

$$
\underset{\pi \in \Pi}{\arg \max } S\left(\mathcal{G}_{\pi}\right)
$$

where

$$
S\left(\mathcal{G}_{\pi}\right)= \begin{cases}-\left|\mathcal{G}_{\pi}\right| & \text { if } \mathcal{G}_{\pi} \text { is Markov wrt } \mathcal{I}\left(\mathcal{G}_{\pi}\right) \\ -\infty & \text { otherwise }\end{cases}
$$

each (partial) order in Π induces a graph \mathcal{G}_{π} and a set of conditional independence constraints $\mathcal{I}\left(\mathcal{G}_{\pi}\right)$. The score compares graphs by their sparsity, and the major challenge is to find a way to efficiently traverse the space of orderings Π.

In practice, we do not know $\mathcal{I}\left(\mathcal{G}_{\pi}\right)$ but rather execute a sequence of conditional independence tests depending on the ordering π.

Permutation-based causal discovery

$$
\underset{\pi \in \Pi}{\arg \max } S\left(\mathcal{G}_{\pi}\right)
$$

Solus et al. (2018) present a greedy search procedure over the space of total causal orderings (DAGs) and show that it is consistent.

Bernstein et al. (2020) present a greedy search over partial causal (ancestral) orderings (MAGs).

Structure learning algorithms... incomplete list

DAGs/CPDAGs:

- PC (+ variants), GES, ARGES, GSP, MMHC, ICA-LiNGAM, directLiNGAM, CAM, SAT-methods, NOTEARS (+ variants)

MAGs/PAGs/ADMGs:

- FCI, RFCI, FCI+, GFCI, GSPo, LV-LiNGAM, M3HC, SAT-methods, Differentiable CD

Cyclic graphs:

- CCD, LiNG, bcause, Two-Step, SAT-methods
constraint-based, score-based, hybrid, semiparametric, other

Software packages for structure learning

```
R:
pcalg
bnlearn
Python:
pcalg.py
causal discovery toolbox (cdt)
causal-learn
ananke
Java:
TETRAD
Matlab:
Bayes net toolbox
```

+ various implementations available from authors of papers

Open problems

- Better general-purpose nonparametric conditional independence tests
- Consistent, scaleable, nonparametric, and more accurate algs for learning MAGs/PAGs/ADMGs
- Characterizations of Markov equivalence for general ADMGs
- Better understanding and methods for learning graphs w/ confounding + cycles (DMGs)
- Consistency results that weaken "strong faithfulness" assumption
- Post-selection inference

[^0]: ${ }^{1}$ MAGs are actually more general than this: they can have undirected (-) edges to represent selection bias in addition to latent confounding, but I'm going to ignore that in this presentation.

[^1]: ${ }^{2}$ Maathuis and Colombo (2015) "A generalized back-door criterion," Annals of Statistics, 43(3), 1060-1088.

[^2]: ${ }^{3}$ Note: Gaussian error terms + linear functions \Longrightarrow Gaussian joint distribution. A Gaussian joint distribution \Longrightarrow linear functions. However, linear functions by themselves do not imply Gaussianity: you can have models which are linear, with non-Gaussian errors, which \Longrightarrow non-Gaussian joint distribution.

[^3]: ${ }^{4}$ See Shimizu (2014) "LiNGAM: Non-Gaussian methods for estimating causal structures," Behaviormetrika 41(1): 65-98.

[^4]: ${ }^{5}$ See Hoyer et al. (2008) "Estimation of causal effects using linear non-Gaussian causal models with hidden variables," Int. Jour. of Approx. Reasoning 49: 362-378.

