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Part 1: Classical Strategies and Concepts



Where does a model come from?

Experimental/problem design

I not always possible, feasible, or obvious

Theory

I may be wrong

I may be underspecified

Experts

I may be wrong

I experts may disagree

I problem may be intractable (high-dimensional settings)

Data

I question is: how?
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Approaches to graphical structure learning

Constraint-based: hypothesis tests of conditional independence (e.g., PC)

Greedy score-based: optimization of a model fit score (e.g., GES)

Semi-parametric methods: exploiting semi-parametric assumptions (e.g.,
ICA-LiNGaM)

Optimization-based: continuous optimization of a penalized likelihood or
score (e.g., NOTEARS)

Hybrid methods: mix of above
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Approaches to graphical structure learning (this lecture)

Constraint-based: hypothesis tests of conditional independence (e.g., PC)

Score-based: greedy optimization of a model fit score (e.g., GES)

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 4 / 72



Notation

G = (V ,E ) will denote a graph with vertices V = {1, ..., p} and edges E .

X = (X1, ...,Xp)′ will denote a random vector with indices in V . Assumed
to be defined wrt background probability space (Ω,F ,P) and induced joint
distribution/density of X will be generically p(x).

Though it is a bit sloppy, I won’t typically carefully distinguish btw vertices
V and variables X ... just let V = X .

I will use Pa(Xi ,G), Adj(Xi ,G), An(Xi ,G), De(Xi ,G) (etc.) to denote the
parents, adjacencies, ancestors, descendents (etc.) of Xi in G.

⊥d denotes d-separation and ⊥⊥ denotes independence.
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Another note...

Throughout I’ll make reference to a distribution p(x) induced by some
causal graph G. In the previous lecture, causal graphical models were
explicated wrt systems of structural equations (SEMs).

In a later lecture (tomorrow), you will hear about causal graphical models
from the perspective of potential outcomes.

Everything in this lecture works fine regardless of which background
formalism you adopt.
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Causal sufficiency & acylicity

In this lecture, we will assume causal sufficiency: there are no unmeasured
(hidden, latent) variables that act as common causes of two or more
measured variables.

We will also assume the data-generating process contains no feedback
(i.e., is recursive). This means the graphical representation will be acyclic.

That is, the true data-generating process corresponds to some DAG with
vertices corresponding only to X = (X1, ...,Xp)′.

(In Part 2, we will dispense with causal sufficiency.)
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Constraint-based versus score-based

Consider a DAG G. By the global Markov property, we know that if

Xi ⊥d Xj |XS in G
then
Xi ⊥⊥ Xj |XS in p(x)

(Xi ,Xj ∈ X ,XS ⊆ X \ {Xi ,Xj})

So we can say that the graphical structure places an independence
constraint on the data distribution. Constraint-based methods directly
exploit those implied constraints on p(x) to try and infer backwards from
data to graphical structure by a sequence of tests.

Score-based methods instead proceed by assigning to every a graph G
some measure of how well the graph “fits” the data. Higher scores mean
better fit, and a score-based approach can be viewed as an optimization
task: search for the graph which has the highest score.
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Constraint-based versus score-based

⇒ Neither of these approaches is universally “better” than the other, but
they have their own virtues and drawbacks depending on the setting.

⇒ There are also theoretical connections between these approaches, so
not quite so distinct as may seem. (Will get to this later.)
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Faithfulness

Markov property tells us a d-separation implies an independence
(Xi ⊥d Xj |XS =⇒ Xi ⊥⊥ Xj |XS) but we can only test independence and
hope to infer backwards to d-separation. What justifies this?

The faithfulness assumption imposes the additional constraint that “all
observed conditional independence constraints follow from the graphical
structure.” This allows us to infer Xi ⊥⊥ Xj |XS =⇒ Xi ⊥d Xj |XS .

Faithfulness puts missing edges and conditional independence in a
one-to-one correspondence. However, this is a substantive assumption on
p(x) and may be violated!
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Example: deterministic relationships among variables

Consider:

X1 X2 X3

where X3 = 2× X2.

X3 ⊥⊥ X1|X2 (by Markov property) but also X2 ⊥⊥ X1|X3 (by determinism).
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Example: exact “cancellation” or “balancing”

Consider:

X1 X2 X3

where

X1 = ε1

X2 = αX1 + ε2

X3 = βX2 − αβX1 + ε3

ε1, ε2, ε3 ∼ N(0, 1), α, β > 0

No independencies follow from Markov property, but X3 ⊥⊥ X1 (by exact
cancellation).
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Faithfulness

It is common to rule out such “extra” or “non-graphical” conditional
independencies, by assumption. This restricts the allowed set of
distributions, and may not always be appropriate.

A distribution p(x) satisfies the faithfulness assumption wrt DAG G if

A ⊥⊥ B|C =⇒ A ⊥d B|C .

In conjunction with the global Markov property this means we’re assuming
A ⊥⊥ B|C ⇐⇒ A ⊥d B|C .

(Here A,B, and C are non-overlapping subsets of V .)

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 13 / 72



Faithfulness

It is common to rule out such “extra” or “non-graphical” conditional
independencies, by assumption. This restricts the allowed set of
distributions, and may not always be appropriate.

A distribution p(x) satisfies the faithfulness assumption wrt DAG G if

A ⊥⊥ B|C =⇒ A ⊥d B|C .

In conjunction with the global Markov property this means we’re assuming
A ⊥⊥ B|C ⇐⇒ A ⊥d B|C .

(Here A,B, and C are non-overlapping subsets of V .)

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 13 / 72



Colliders: a special graphical substructure

BatteryCharged

CarStart

FuelLevel

In constraint-based causal discovery, unshielded colliders play a central role.

By d-separation: BatteryCharged ⊥d FuelLevel .
By faithfulness assumption: BatteryCharged 6⊥⊥ FuelLevel |CarStart.

Conditioning on CarStart makes FuelLevel informative about
BatteryCharged .
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Colliders, Chains, Forks

X1

X2

X3

Very different from “chains.”

By d-separation: X1 6⊥d X3.
By d-separation: X1 ⊥d X3|X2.

Conditioning on X2 makes X1 non-informative about X3.
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Colliders: a special graphical substructure

This means that colliders can act as a “smoking gun” to determine some
orientations, whereas forks and chains lead to some underdetermination.
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How might you select a model if computational limitations
weren’t an issue?

Brute force enumerate all possible DAGs, derive independence implications
for each, and test them.

X1 → X2 → X3 X1 ← X2 ← X3 X1 ← X2 → X3 X1 → X2 ← X3

⇓ ⇓ ⇓ ⇓

X1 ⊥⊥ X3|X2 X1 ⊥⊥ X3|X2 X1 ⊥⊥ X3|X2 X1 ⊥⊥ X3

X1 6⊥⊥ X3|X2

w/ faithfulness
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Markov equivalence

We typically identify causal structure only up to Markov equivalence.

X1 → X2 → X3

X1 ← X2 ← X3

X2 ← X2 → X3

a)

X1 − X2 − X3

b)

X1 → X2 ← X3

c)

Figure: a) Three Markov equivalent DAG models. b) The CPDAG representation
of (a). c) A DAG that is not Markov equivalent to the graphs in (a).

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 19 / 72



CPDAG

X1 X2

X3 X4

Let G be a DAG. The CPDAG C (completed partial DAG) implied by G is
a mixed graph (directed and undirected edges) that has the same
adjacencies as G and:

I a directed edge Xi → Xj in C iff the edge Xi → Xj is common to all
DAGs Markov equivalent to G

I all other edges in C are undirected.

The skeleton of a (partially) directed graph is the undirected graph
obtained by replacing all edges by undirected edges. Recall that Markov
equivalent DAGs share the same skeleton and unshielded colliders.
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Which independence hypotheses to test?

We want to search for separating sets which make each pair Xi ,Xj

conditionally independent. A naive approach would be to consider all
possible subsets XS ⊆ X \ {Xi ,Xj} to evaluate whether there exists a
separating set.

However, by the DAG Markov properties we know that Xi 6∈ Adj(Xj ,G) if
and only if Xi ⊥⊥ Xj |Pa(Xi ,G) or Xi ⊥⊥ Xj |Pa(Xj ,G).

We don’t know the parent set ahead of time (we don’t know the graph!)
so we look at XS ⊆ Adj(Xi ,G′) and XS ⊆ Adj(Xj ,G′) for some G′ which is
a supergraph of the true unknown skeleton.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 21 / 72



Constraint-based learning: the PC algorithm

X1 X2

X3 X4
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Constraint-based learning: the PC algorithm

X1 X2

X3 X4

X2 ⊥⊥ X3|∅
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Constraint-based learning: the PC algorithm

X1 X2

X3 X4

X1 ⊥⊥ X3|X4
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Constraint-based learning: the PC algorithm

X1 X2

X3 X4

X2 6⊥⊥ X4|X1

X3 → X4 and X3 ← X4 both possible
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Algorithm 0.1: PC(Test, α)

Input: Samples of the vector X = (X1, ...,Xp)′

Output: CPDAG G
1. Form the complete graph G on vertex set X w/ undirected edges.
2. Let s = 0
3. repeat
4. for all pairs of adjacent vertices (Xi ,Xj) s.t. |Adj(Xi ,G) \ {Xj}| ≥ s

and subsets XS ⊆ Adj(Xi ,G) \ {Xj} s.t. |S | = s
5. if Xi ⊥⊥ Xj |XS according to (Test, α)

then

{
Delete edge Xi − Xj from G.
Let sepset(Xi ,Xj) = sepset(Xj ,Xi ) = XS .

6. end
7. Let s = s + 1
8. until for each pair of adjacent vertices (Xi ,Xj), |Adj(Xi ,G) \ {Xj}| < s.
9. for all triples (i , k , j) s.t. Xi ∈ Adj(Xk ,G) and Xj ∈ Adj(Xk ,G)

but Xi 6∈ Adj(Xj ,G), orient Xi → Xk ← Xj in G iff Xk 6∈ sepset(Xi ,Xj).
10. Exhaustively apply orientation rules (R1-R4) to orient

remaining undirected edges.
11. return G.
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Orientation rules

R1: Orient Xj − Xk into Xj → Xk whenever there is an arrow Xi → Xj

such that Xi and Xk are nonadjacent.

R2: Orient Xi − Xj into Xi → Xj whenever there is a path Xi → Xk → Xj .

R3: Orient Xi − Xj into Xi → Xj whenever there are two paths
Xi − Xk → Xj and Xi − Xl → Xj such that Xk and Xl are nonadjacent.

R4: Orient Xi − Xj into Xi → Xj whenever there are two paths
Xi − Xk → Xj and Xi − Xl → Xk such that Xj and Xl are nonadjacent.
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Constraint-based learning: the PC algorithm

The “logic” of PC:

I conditional independencies correspond to missing edges

I the “collider” rule enables orientation of triples Xi → Xj ← Xk

I other orientations follow from the acyclicity assumption

I remaining unoriented edges reflect the Markov equivalence of models
consistent with the data
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Theory

Computational complexity:

We note that for graphs with bounded degree, i.e., a bound on
d = maxi∈V |Adj(Xi ,G)|, the PC algorithm has a running time that is
polynomial in the number of variables. The running time depends
exponentially on the degree. Specifically the number of tests is bounded
by 2

(p
2

)∑d
i=0

(p−1
i

)
(in the worst case).
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Theory

Correctness (soundness and completeness):

Theorem: Assume the distribution p(x) is Markov and faithful to some
DAG G. Let C be the CPDAG implied by G. The “oracle” PC algorithm
returns C.

Consistency:

Theorem (informal): Assume the distribution p(x) is Markov and faithful
to some DAG G. Let C be the CPDAG implied by G. Let Ĉ be the output
of PC with some consistent conditional independence test and level αn.
Then there is a sequence of αn → 0 (n→∞) such that
limn→∞ P(Ĉ = C) = 1.
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Conditional independence tests

With finite data, the PC algorithm needs a procedure for deciding whether
Xi ⊥⊥ Xj |XS .

In practice, test the null hypothesis

H0 : Xi ⊥⊥ Xj |XS

and reject the null if some test statistic T (x) < α, where α is a
user-specified threshold (which may depend on the sample size). That is,
if we reject the null hypothesis, we keep the edge, and if we fail to reject,
we remove the edge.
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Conditional independence tests

Note: α in PC has no straightfoward interpretation in terms of the Type I
error, since in fact we are testing multiple hypotheses and an a priori
unknown number of them.

So, α should be better thought of as a tuning parameter which controls
the sparsity of the estimated graph. (Smaller α =⇒ more sparse)

Though it is not straightforward, one may try to be clever and control the
FDR. In practice: make α small as the number of variables and sample
size gets big. (More on choosing α later.)
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Conditional independence tests

The choice of statistical test depends on the distribution p(x). If you’re
willing to assume that p(x) is in some nice parametric family (Gaussian,
multinomial) then life is easier. However, nonparametric tests of
conditional independence are also available (and in development).

First, consider the case where X is multivariate Gaussian.
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Test for Gaussian data

Theorem. If X is multivariate Gaussian then Xi ⊥⊥ Xj |XS iff ρij .S = 0.

ρij .S is called the partial correlation (of Xi and Xj given XS) and can be
defined as follows: for any k ∈ S ,

ρij .S =
ρij .S\k − ρik.S\kρjk.S\k√
(1− ρ2

ik.S\k)(1− ρ2
kj .S\k)

This is a recursive definition that terminates at |S | = 1. Leads to combos

of regular pairwise correlations: ρij =
cov(Xi ,Xj )

σiσj
.

Easy to obtain estimate ρ̂ij .S based on the empirical covariance matrix.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 35 / 72



Test for Gaussian data

Theorem. If X is multivariate Gaussian then Xi ⊥⊥ Xj |XS iff ρij .S = 0.

ρij .S is called the partial correlation (of Xi and Xj given XS) and can be
defined as follows: for any k ∈ S ,

ρij .S =
ρij .S\k − ρik.S\kρjk.S\k√
(1− ρ2

ik.S\k)(1− ρ2
kj .S\k)

This is a recursive definition that terminates at |S | = 1. Leads to combos

of regular pairwise correlations: ρij =
cov(Xi ,Xj )

σiσj
.

Easy to obtain estimate ρ̂ij .S based on the empirical covariance matrix.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 35 / 72



Test for Gaussian data

Moreover define Fisher’s Z-transform:

Z (ρij .S , n) =
1

2

√
n − |S | − 3 log

(
1 + ρij .S
1− ρij .S

)
under the null hypothesis ρij .S = 0:
Z (ρij .S , n)− Z (ρ̂ij .S , n) ∼ N(0, 1) as n→∞.

So for a level α test we reject if Z (ρ̂ij .S , n) > Φ−1(1− α/2)
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Other parametric tests

There are similar tests for multinomial discrete data based on the χ2 and
G 2 test statistics.

One may also use tests based on (logistic) regression or odds ratios.
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Nonparametric tests

Tests which make minimal distributional assumptions are an active area of
research. A well-known test based on Kernel matrices is the KCI
(Kernel-based Conditional Independence) test.1

KCI assumes the the variables are related by arbitrary square-integrable
functions, plus some smoothness/simplicity conditions to test Xi ⊥⊥ Xj |XS

nonparametrically. The test statistic is:

1

n
tr(K̃Ẍi |XS

K̃Xj |XS
)

where K̃A|B is a conditional centralized kernel matrix constructed with

some kernel function, and Ẍi = (Xi ,XS).

1Zhang et al. (2011) “Kernel-based conditional independence test and application in
causal discovery” in UAI
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Nonparametric tests

The KCI test is implemented in R (e.g., library(CondIndTests))

n <- 100

Z <- rnorm(n)

X <- 4 + 2 * Z + rnorm(n)

Y <- 3 * X^2 + Z + rnorm(n)

test1 <- CondIndTest(X,Y,Z, method = "KCI")

cat("These data come from a distribution, for which X and Y

are NOT cond. ind. given Z.")

cat(paste("The p-value of the test is: ", test1$pvalue))

The problem is that the test is very computationally intensive with big n
and big |S |.

There are other nonparametric tests in other packages, each have pros and
cons
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Other nonparametric independence tests

Shah and Peters (2020)2 propose an independence test based on:

E[cov(Xi ,Xj |XS)]

which = 0 under the null, and

cov(Xi ,Xj |XS) = E[XiXj |XS ]− E[Xi |XS ]E[Xj |XS ]

The test statistic is based on estimating residuals from
semi/nonparametric regressions, i.e.,

{xi − f̂ (xS)}{xj − ĝ(xS)}

under the assumption that the true
f (xS) = E[Xi |XS = xS ], g(xS) = E[Xj |XS = xS ] satisfy some smoothness
conditions.

2Shah & Peters (2020) “The hardness of conditional independence testing and the
generalised covariance measure,” Annals of Statistics, 48(3), 1514-1538.
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Virtues and drawbacks of constraint-based search

Virtues:

I nonparametric (in principle)

I relatively scaleable

I lots of work on improvements, heuristics, generalizations

Drawbacks:

I statistical test errors propogate, can make a big difference to the
output (can be mitigated by some stability techniques)

I does not handle conflicting statistical information in an intelligent way

I not that scaleable (cannot really parallelize)

I tackles problem only “locally,” makes each decision only once,
produces one estimated CPDAG rather than a range of good options
(no “confidence intervals” or “posterior distribution”)
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Score-based model selection for DAGs

Score-based procedures view structure learning as an optimization
problem: assign a score to every structure, and find the structure with the
highest score.

A natural score to consider is the posterior probability of a particular
structure given the observed data. More a posteriori probable structures
“fit” the data “better” and we can imagine searching for the structure
which has the highest posterior. How would we define this?
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Posteriors over BN models

Recall that a Bayesian network model is a pair (G,P) where P is a set of
distributions that factorize wrt G. Consider a parameterized Bayesian
network model which we instead write (G, θG), where θG is the set of
parameters which index the distributions in P.

We define the postior probability of a structure G given data D as

p(G|D) =
p(D|G)p(G)

p(D)

where p(G) is a structure prior, p(D|G) =
∫

ΘG
p(D|θG ,G)p(θG |G)dθG , and

p(θG |G) is a parameter prior. p(D|G) is called the marginal likelihood.
Note that the denominator p(D) is the same for every structure so does
not play a role in structure selection; we can thus ignore it.
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Bayesian score

We could follow this reasoning to define a model score S(G,D) which
takes a candidate structure G and a dataset D and returns a number
proportional to the posterior (ignoring the denominator): the Bayesian
score S(G,D) ≡ log p(D|G) + log p(G). We could even assume that every
DAG in the space of DAGs has equal prior probability, to make that part
easy.

That still leaves us with trying to evaluate
p(D|G) =

∫
ΘG

p(D|θG ,G)p(θG |G)dθG which depends on a prior for every
θG .

⇒ this is very difficult to calculate outside of special cases.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 44 / 72



Bayesian score

There was a lot of work in the early 90’s on how to evaluate the marginal
likelihood for special cases like binary (multinomial) or Gaussian random
variables. Turns out if you don’t pick the parameter prior right, you
probably can’t evaluate that integral.

For example, a lot of work was done (in the binary case) with the
Dirchelet prior, θG ∼ Dir(α) which has a density proportional to∏n

i=1 θ
αi−1
i . This isn’t intuitive, but the Dirchelet prior is conjugate for the

multinomial model, thus making p(D|G) relatively easy to compute. There
are few other examples of convenient priors like this.
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BIC score

These days, it much more likely that one would use an approximation to
the Bayesian score called the BIC criterion. More specifically, for
distributions in the exponential family the BIC is an approximation to the
marginal likelihood p(D|G) under some weak assumptions about the prior).

log p(D|G) ≈ `(D; θ̂G)− d

2
log n + O(1)

where `(·) is the log-likelihood, θ̂G is the maximum likelihood estimate of
the parameters, n is the sample size, and d is the model dimension.
Assume a uniform prior over graphical structures we can just use this
approximation as our model score:

S(G,D) ≡ `(D; θ̂G)− d

2
log n
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BIC score interpretation

What’s the interpretation here? If we assume a uniform prior over
structures and a “smooth” prior over parameters, maximizing the BIC
score is approximately equivalent to maximizing the posterior probability of
the graph structure, given the data. That’s the Bayesian interpretation.

Alternatively, we can view the BIC score as measure of model “fit” which
is a penalized MLE – the second term penalizes complex models,
preferring models of smaller dimension. Why? If we just used the MLE as
measure of model fit, we would always choose the most complex graph,
overfitting the data. The penalty prevents overfitting.
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BIC score interpretation

You may wonder what would be the non-Bayesian justification of this
particular sparsity penalty: d

2 log n. The answer is that this penalty makes
the score consistent, i.e., maximizing the BIC score will select the true
model in the limit. Some other penalties you may come up with will not
be consistent (example: the Aikake Information Criterion or AIC score
which has a penalty ∝ d , independent of n, is not consistent!)

The BIC score is also easy to evaluate, because we know how to do MLE.
For example: When X ∼ N(0,Σ)

S(G,D) = n
2 log |Σ̂| − d

2 log n
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What might you do if computational limitations weren’t an
issue?

Brute force enumerate all possible DAGs, score each, and select the
highest scoring one.

X1 → X2 → X3 X1 ← X2 ← X3 X1 ← X2 → X3 X1 → X2 ← X3

⇓ ⇓ ⇓ ⇓

S(G1,D) S(G2,D) S(G3,D) S(G4,D)

S(G1,D) = S(G2,D) = S(G3,D)
since “same independence model ⇒ same likelihood” (for Gaussians) +
same dimension
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Greedy score-based model selection

Greedy score-based algorithms use stepwise optimization of the BIC
score in such a way that we don’t have to traverse the whole space of
graphical structures, but which is still globally optimal.

The Greedy Equivalence Search (GES) algorithm operates in the space of
CPDAGs, to respect Markov equivalence.
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Score-based learning: the GES algorithm

Adds and removes directed edges to optimize a BIC score.

X1 X2

X3 X4
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Algorithm 0.2: GES(Score)

Input: Samples of the vector X = (X1, ...,Xp)′

Output: CPDAG G
1. Form the empty graph G on vertex set X .
2. Let S(G,D) be the Score for G with data D.
3. 〈G, S〉 ← ForwardEquivalenceSearch(G, S)
4. G ← BackwardEquivalenceSearch(G, S)
5. return G.
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Algorithm 0.3: ForwardEquivalenceSearch(G, S)

Input: Samples of the vector X = (X1, ...,Xp)′

Output: CPDAG G, Score S
1. while E0 6= ∅
2. E0 ← T0 ← ∅. S0 ← 0.
3. for each candidate edge E = Xi → Xj s.t. Xi 6∈ Adj(Xj ,G)
4. Let T ′ ← vertices Xk s.t. Xk − Xj and Xk 6∈ Adj(Xi ,G)
5. for each subset T ∈ T ′

6. G′ ← a DAG in G
7. S ′ ← S + ScoreEdgeAddition(G,E ,T )
8. if S ′ > S and S ′ > S0 and ValidInsert(G,E ,T )

then

E0 ← E
T0 ← T
S0 ← S ′

9. end
10. end
11. if E0 6= ∅

then


Add E0 to G.
for each T ∈ T0 if T − Xi in G, orient T − Xi as T → Xi .
S ← S0

G ← Rebuild(G)
13. end
14. return 〈G, S〉.

This psuedocode follows Ramsey et al. (2010) “Six problems for causal inference in fMRI”. NeuroImage 49: 1545-1558.
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Algorithm 0.4: BackwardEquivalenceSearch(G, S)

Input: Samples of the vector X = (X1, ...,Xp)′

Output: CPDAG G
1. while E0 6= ∅
2. E0 ← H0 ← ∅. S0 ← 0.
3. for each edge E = (Xi ,Xj ) in G
4. Let H′ ← vertices Xk s.t. Xk − Xj and Xk ∈ Adj(Xi ,G)
5. for each subset H ∈ H′

6. G′ ← a DAG in G
7. S ′ ← S + ScoreEdgeDeletion(G,E ,H)
8. if S ′ > S and S ′ > S0 and ValidDelete(G,E ,H)

then

E0 ← E
H0 ← H
S0 ← S ′

9. end
10. end
11. if E0 6= ∅

then


Remove E0 from G.
for each H ∈ H0 if Xi − H in G, orient Xi − H as Xi → H.
S ← S0

G ← Rebuild(G)
13. end
14. return G.

This psuedocode follows Ramsey et al. (2010) “Six problems for causal inference in fMRI”. NeuroImage 49: 1545-1558.
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Algorithm 0.5: ValidInsert(G,E ,T )

1. NAij ← vertices Xk s.t. Xk − Xj and Xk ∈ Adj(Xi ,G)
2. if NAij ∪ T is not a clique return false
3. if some semidirected path from Xj to Xi does not contain any node in

NAij ∪ T return false
4. return true

Algorithm 0.6: ValidDelete(G,E ,H)

1. NAij ← vertices Xk s.t. Xk − Xj and Xk ∈ Adj(Xi ,G)
2. if NAij \ H is not a clique return false
3. else return true

ScoreEdgeAddition and ScoreEdgeDeletion are routines that
calculate score differences based on new parent sets. Rebuild keeps track
of Markov equivalence relations, basically transforms the current DAG in
the procedure to corresponding CPDAG using (R1-R4) just as in PC.

For some omitted details see Chickering (2002) ”Optimal structure identification with greedy search,” Journal of Machine
Learning Research 3: 507-554.
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Constraint-based learning: the GES algorithm

The “logic” of GES:

I the highest scoring model will, in the limit n→∞, be a member of
the true equivalence class

I by adding and removing edges to incrementally improve the score, can
achieve a global optimum

I some rules that (un)orient edges to account for Markov equivalence
and enforce acyclicity
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Score

To make greedy search for CPDAGs globally optimal (converge on the
highest scoring, and thus true, structure in the limit) the score we use
should satisfy three abstract properties. It turns out that the BIC score
satisfies these properties.

Consistency: the true structure G will maximize the score, and all
structures G′ that are not Markov equivalent to G will have strictly lower
score.

Score-equivalence: If G is Markov equivalent to G′, then
S(G,D) = S(G′,D).

Decomposability: S(G,D) =
∑

i∈V s(Xi ,Pa(Xi ,G))
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Score properties

Assuming faithfulness, GES finds a global optimum for any consistent,
score-equivalent, and decomposable score. It turns out the key property,
which is a consequence of these 3, is local consistency:

Let G be any DAG, and let G′ be the DAG that results from adding the
edge Xi → Xj . A scoring criterion S(G,D) is locally consistent if the
following two properties hold:
1. If Xi 6⊥⊥ Xj |Pa(Xj ,G) then limn→∞ P(S(G′,D) > S(G,D)) = 1
2. If Xi ⊥⊥ Xj |Pa(Xj ,G) then limn→∞ P(S(G′,D) < S(G,D)) = 1

Single-edge score differences ⇔ conditional independence tests
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Scores and conditional independence

Single-edge score differences ⇔ conditional independence tests.

E.g., for Gaussian dist can show that

S(G′,D)− S(G,D) = n log(1− ρ2
ij .Pa(Xj ,G)) + log(n)

Since GES only looks at score differences semi/nonparametric versions of
this correspondence can be used to construct semi/nonparametric versions
of GES (e.g., Huang et al. 2016).
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Theory

The BIC score is consistent, score-equivalent (for simple parametric
families), and decomposable. Thus it is also locally consistent.

Theorem: Assume the distribution p(x) is Markov and faithful to some
DAG G. Let C be the CPDAG implied by G. Let Ĉ be the output of GES
using a locally consistent score. Then limn→∞ P(Ĉ = C) = 1.
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Why is greedy stepwise selection consistent here?

A key result that is that the global optimum of the score will be found (as
n→∞) using only single edge additions/reversals.

A DAG H is an independence map (I-map) of a DAG G if every
independence relationship in H holds in G. We use G ≤ H to denote that
H is an I-map of G and H contains more edges than G.

Meek’s conjecture3 states (informal here) that G ≤ H if and only if we can
transform G into H by a sequence of (1) covered edge reversals and (2)
single edge additions. =⇒ If GES arrives at a local maximum of the score
H, can show that there exists a G ≤ H and there is a sequence of
single-edge moves that transforms H to G while improving the score,
contradicting that H was a local maximum.

3Constructive proof in Chickering (2002)
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Virtues and drawbacks of score-based search

Virtues:

I easy to parallelize, easy to scale to large numbers of variables

I less prone to statistical errors than constraint-based search, backwards
stage can “recover” from some mistakes

Drawbacks:

I need to specify likelihoods, so not so easy to do nonparametrically
(mostly restricted to exponential families, though there has been
recent work on nonparametric scores)

I no need4 to pick tuning parameter α

I somewhat less developed statistical properties

4but... may pick any positive constant factor to multiply the sparsity penalty (enforce
more sparsity), which may be treated as a tuning parameter
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Uniform consistency results in high-dim settings

There has been an interest in stronger guarantees of asymptotic
convergence (rates), esp in settings where p � n. Strong guarantees
invoke stronger assumptions:

A1 The distribution pn(x) is multivariate Gaussian and faithful to the
DAG Gn for all n.

A2 The dimension pn = O(na) for some 0 ≤ a <∞.

A3 The maximal number of neighbors in the DAG Gn is denoted by
qn = max1≤j≤pn |Adj(Xj ,Gn)| with qn = O(n1−b) for some 0 < b ≤ 1.

A4 For all i , j ,S , partial correlations are bounded from below and above:

inf{|pij .S | : i , j ,S withpij .S 6= 0} ≥ cn,

c−1
n = O(nd) for some 0 < d < b/2

sup
i ,j ,S
|pij .S | ≤ M < 1
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Uniform consistency results in high-dim settings

Theorem: Asssume (A1-A4). Let Ĉ be the output of PC with Fisher’s Z
test of conditional independence test and level αn. Then there is a
sequence of αn → 0 (n→∞) such that
P(Ĉ = C) = 1− O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞.

Can choose αn = 2(1− Φ(n1/2cn/2)) and calculate (loose) bound the
error.

Similar results exist for a wider range of distributions (semiparametric
families, Gaussian copulas), so the Gaussianity is not necessary so long as
you have statistical test with appropriate properties.

Daniel Malinsky (Columbia) Simons Institute Bootcamp Part 1 70 / 72



Very rough sketch of how the proof goes...

Let mn denote the max size of the conditioning set considered by PC. Call
this alg PC(mn). Let Eij .S denote the event “an error occurs when testing
ρij .S = 0”.

P(an error occurs in PC(mn))

≤ P
(⋃

i ,j ,S Eij .S

)
≤ O(pmn+2

n ) supi ,j ,S P(Eij .S)

Eij .S = E I
ij .S ∪ E II

ij .S consists of two possible errors: type I and type II.

supi ,j ,S P(E I
ij .S) ≤ O(n −mn) exp(−C1(n −mn)c2

n)

supi ,j ,S P(E II
ij .S) ≤ O(n −mn) exp(−C2(n −mn)c2

n)

P(an error occurs in PC(mn)) ≤ O(pmn+2
n (n−mn) exp(−C3(n−mn)c2

n)) ≤
O(na(mn+2)+1 exp(−C3(n −mn)n−2d))
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Uniform consistency results in high-dim settings

The previous result is from Kalisch and Buhlmann (2007). The
combination of faithfulness and (A4) is called strong faithfulness and has
been criticized as a strong assumption (Uhler et al. 2013).

Similar results (somewhat stronger assumptions) have been proved for
GES (Nandy et al. 2016).

Uniform consistency results for a modified PC (SGS) have been proved
under a weaker assumption called k-triangle-faithfulness (Spirtes and
Zhang 2014).
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